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OSCILLATIONS OF AN ELASTIC INHOMOGENEOUS STRIP CAUSED BY MOVING LOADS* 
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There is studied the problem of the motion of a load on the boundary of an inhomo- 
geneous elastic strip. It is assumed that the load moves at a constant sub-seismic 
velocity, and a regime of steady harmonic oscillations existsinthemovingcoordinate 
system. It is proved that the solution of the problem under consideration can be 
obtained easily if the solution of the "appropriate" problem of the oscillations of 
an inhomogeneous strip is known. Estimates are given of the velocity of the motion 
and the frequency of the oscillations at which there exists a unique energysolution 
of the problem. When the oscillations frequency is such that the energy solution 
does not exist, principles are formulated for extracting the unique solution. 

1. Let a source of perturbations move at a constant velocity 111 along the boundary of an 
elastic medium. We shall study two kinds of problems, stationary and nonstationary. We call 
stationary the problem in which the state of stress and strain is independent of time in the 
coordinate system coupled to the moving perturbations source. Otherwise we shall say that we 
deal with a nonstationary problem. 

Stationary problems were first studied in /1,2/. Contact stationary problems were con- 
sidered in /3/ for homogeneous isotropic or pre-stressed strips. Stationary problems were 
studied in the monograph /4/ for load motion at a superseismic velocity over the boundary of 
a multilayered anisotropic foundation. 

Problems with moving perturbations are studied separately in all the works listed, and 
without relationship to analogous problems about the harmonic oscillations of a strip. The 
relationship between these problems is made below and it is shown that on the basis of the 
"principles of correspondence" /5/, the properties of the solutions of the stationary and non- 
stationary problems can be obtained directly on the basis of investigating "corresponding" 
problems about strip oscillations /6-E/. Also analyzed here are the principles for selecting 
the unique solution. Motion to just the pre-seismic velocity is considered. 

Let an elastic inhomogeneous anisotropic strip fill a domain S (-ca KS,< m; O<xs, Q 1). 
We will consider that we deal with an anisotropic material of general form and that the 
material constants depend only on x,. In this case the stresses and strains are related by 
the Hooke's law relations 

C? = Cpjkl (2,) &k,; p, j, k, 1 = 1, 2 (1.1) 
2Ekl = uli, 1 + &,k (1.2) 

Substituting (1.1) into the equations of motion, we find 

(c"jk' (XZ) Uk, l), j = p (X2) up” (1.3) 

Let a source of perturbations move at constant velocity Won the strip boundary. We shall 
henceforth assume that the boundary x2 = 0 is clamped, 
on the boundary x,= 1 

while the following conditions aregiven 

Problem A 

Problem B 

.=' (x1, 1, t)=fi(xJ@'; f'(rJ=O, Ix,I>a; j=l,2 (1.4) 

Problem C 

& (x1, 1, t) = * (x1 - wt); f’ (x) = 0, Ix 1 > a; j = 1, 2 (1.5) 

u2'(x1.1,t)=P(x1-~t)eiQ'; fl(x)=O, IzI>a; j=i,2 (1.6) 

Wecalltheproblems A-C corresponding in the sense that in a moving coordinate system 

x = 51 - zut, y = x1 

*Prikl.Matem.Mekhan.,46,No.2,pp.296-302,1982 

(1.7) 
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the boundary conditions are identical and expressed by using the very same functions fj (4. 
The following theorem is fundamental to a further study. 

Theorem 1. Let the solution of the problem A be known 

UA = g (zl, x2, w) e'of 

and let the Fourier transform of the vector-function g with respect to the coordinate 51 have 
the form 

Then the solution of problem C is determined by the formula 

(1.8) 

(1.9) 

and the solution of problem B by (1.9), where we should set Q = 0. 
For the proof we make a change of variables of the form (1.7) in the equations (1.3) and 

the boundary conditions (1.5), and we obtain 

We shall seek 

Substituting 

(( “‘j” (y) Uk, I), j = E)(y) (Up" + U.*llp, 11 = - 2U’Up, 1) (1.10) 

u2) (5, 1, t) = f' (x) e'"'. U (x, 0, t) = 0 

the solution of the boundary value problem (1.10) in the form 

u (z, y, t) = u (x, y,) eiel 

1.11) into (1.10) and applying the Fourier transform, we find 

L (V) i- pp (y) v = 0; M (V) = F, y = 1; v = 0, y = 0 
x2 

1,’ = s Li (s, y) eiVx dx; Fj = j fj (X) e’Wdx 
-u 

(1.11) 

(1.12) 

L (V) = Lo (V) - iyL, (V) -“,z L2 (V) 

M (V) =- M. (V) - iyM, (V); p = (Q + yw)2 

The differential expressions of the two-dimensional vectors L, and 
using the relations 

Loj = (@* (2~) l.kr 2), *, L,j = (‘jlh2 (y) Lrk, 2 i- @Yk (y) V,), 2 
L,, = c’jllh. (y) lvk, .llOj = CJzk2(y) V,, 2, :Illj = c2jk* (y)V, 

Now, if we seek the solution of problem A in the form (l.ll), then 

M, are determined by 

after analogous mani- 

pulations we will arrive at a boundary value problem of the form (1.12), only we should set 
p = w2, (0 == 9. From a comparison of the boundary value problems A and C ObtainedintheFourier 
transforms, theorem 1 results. The question of the selection of the contour of integration I, 
in (1.9) will be discussed below. 

Theorem 1 permits investigating the problems C and B on the basis of the properties of 
the solution to problem A which have already been studied /6-a/. 

2. A study of the zeroes of the dispersion equation 

D (y, Q + I'W) = 0 

will be important for the sequel. 

(2.1) 

Here we devote the main attention just to the real projection of the zeroes of the dis- 
persion equation. We let rr denote the set of points in a plane of two real variables (Y? 4 
that satisfy the equation 

D (y, 0) = 0 

Lemma 1. The set of points Tz satisfying (2.1) in the plane of two real variables 
52 (IO> 0 is fixed) consists of points of intersection of the line 

0=QS_yUJ 

with the set rr. 
Lemma 1 is obvious. Therefore, the points belonging to r? can be found by means of 

known set rl by a graphical construction (see Fig-l). 
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Fig.1 

Equation (2.1) can have zeroes with different signs (solid line), 
with the identical signs (dashed line), and multiple zeroes (dash-dot 

line). We call the first two types of roots regular, and the last ir- 
regular. We show below that different mechanical phenomena occurring in 
the strip correspond to these three types of roots. 

The sequent lemmas follow from results obtained earlier /6,7/. 

Lemma 2. Positive constants m,o, exist suchthatuponcompliance 
with the conditions 

(2.4) 

equation (2.1) will have no real roots. When conditions (2.4) are violated, the equation can 
have real roots, and always a finite number if only 

W( 1/m/p,, 52 < M = const < 00 (2.5) 

Lemma 3. Let V,'(Y) be an eigenfunction, the solution of the homogeneous boundaryvalue 
problem (1.12) for F = 0 and yk, 52 =rz and let Vkl,Bke,..., Vkq be vector functions associate 
to VkO. In this case the solution of the homogeneous problem (l.lO), (1.11) will have the 
form 

(2.6) 

3. We study questions associated with the existence of energy solutions of problems B 
and C. For later, we introduce the scalar product 

(at b)H,, = S Cpjkl (Y) epj (a) Ekl (6) dS 
s 

(3.1) 

(a, b)w,c = S i Qr, jbb,j dS 
Sk, j=1 

in the set H of vector-functions a continuous with their first derivativesandtakingthevalue 
zero at Y = 0. 

We call the spaces H,, and W,l, respectively, the closure of the set Hor of its corres- 
ponding subsets in norms corresponding to (3.1). Let us also introduce the space H, 

(a,b) =Sp(y)a.bdS (3.2) 

The following inequalities hold /8/: ' 

where o0 and mare constants in (2.4) 
We call the vector function UE H,, satisfying the integral indentities 

(Y I 4H18 -S 
s 

p(y)w2uk,lak91dS= f fk@)ak(&l)dX 

--a 

(U 1 &flu - 5 [duk, I=+ iz& (u 
5 

k, Iah_ - uh.ah.t~) -I- @upaT] p(y) dS = f f” (x) ah. (I, 1) dx 
--o 

(3.3) 

(3.4) 

(3.5) 

respectively, for arbitrary a~ H,, the generalized solution of problems B and C. 

Theorem 2. Let conditions (2.4) be satisfied and fj(x)E&,(-a,a),p> 1. In this case 
a unique generalized solution of problem C (and of problem B) exists in HI,. 

Indeed, by estimating the integral in the left side of (3.5) while taking (3.3) into ac- 
count, we obtain 

Sp(Y) ]~%,lGJ + iwn(ak,lZ-- UA=) + @uiah_]dS <(v-poim + R/oO)~II u ]]H,, ]\(I I/H,, 
s 

and since condition (2.4) is satisfied, then an auxiliary space Hla0 can be introduced with a 
scalar product defined by the left side of the integral identity (3.5). The space introduced 
and H,, are again equivalent. Furthermore,there follows from the conditions of Theorem 2 and 
the imbedding theorem /9/ 
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Hence, because of the equivalence of HI, and H,,“, unique solvability of the problem C 
(and of problem B) results. Here 

II U IIIflS < 171 II f IIL,’ 

4. The question of selecting the unique solution occurs in studying steady oscillations 
of a strip in the case conditions (2.4) are not satisfied. 

The Ignatovskii /lo/ principle of ultimate absorption, the Mandel'shtam /ll/ principle of 
energetic radiation, the Sommerfeld principle /lo/, and also the Tikhonov-Samarskii principle 
/lo/ of ultimate amplitude are usually used in problem A. A complete analysis of the first 
three principles for problem A is given in /6,7/. 

We analyze the situation that occurs in problem C. We assume that the roots of equation 
(2.1) are simple. The homogeneous solution of the problem C then has the form (2.6) or in 
real form 

u (.1., y. f) ~3. (y) sin 8 + 13, (y) cos 6, 6 : Qt - i's (4.1) 

Let us obtain the energy relations. To do this we miltiply the first equation of the 
system (1.10) by u,', the second by ~?'and add. Integrating the result with respect to y be- 
tween () and 1, we find 

(4.2) 

It was taken into account in the derivation of (4.2) that the solution (4.1) satisfies 
homogeneous boundary conditions, and moreover, the energy E and the energy flux J through a 
section 2 = const are determined by the formulas 

2E = \ tCpjk' (Y)epj (u) %I C”) -t P (!/I [“l’a + uia -w2(ul”, I+ u”,, 1))) ($4 
0 

J=-i[ dk&’ + wp (y) (ul’a + ha2 - u‘uk, luk’)] dy 

0 

Using the Hooke's law relationship and (4.11, as well as the equation 

A (0 (v), a) + f= (~9 a) = 0 

A(uW)=~Iy I’() (Je 0 ask - dk (v) ask. 2 - ~7:’ (17) Uek, a - yU:” (U) a&] dY 
0 

B(u,a)=~p(Y)(U,.a,+u,.a,)dY 
0 

of motion,weobtain 

(4.3) 

NOW setting a = u in (4.3) I we differentiate the equality obtained with respect to y. 
We then find by taking account of (4.3) that 

+qu, u) + 2c (a (u), u) = 0 (4.4) 

c (0 (u), u) = 5 [dk (u) U,k - 0:” (U) U,k] dY 
0 

The subscripts c and s mean that the appropriate function is represented in a form analo- 
gous to (4.1). Finally, taking into account that 

JI = +- 1 i dk (IZ) uk’dy dt = - + c (U (u), u); 

0 ” 

we obtain by taking account of (4.4) 

Jl= + $+ B (u, u) (4.5) 

A formula analogous to (4.5) was obtained by another method /7/. 
Let us form a relationship for the energy flux in problem C. By using (4.5) and (4.11, 

we can establish that the energy flux through a section x = const, calculated in a moving 
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coordinate system and averaged over the period of the oscillations, is given by the relation- 

ship 

Here cB is the group velocity of wave propagation in problem A, calculated at the point 

(Y, Q + V) on the (y,o) plane. 
Finally, we present the relationship for the energy averaged over the period of oscilla- 

tions and calculated in a moving coordinate system 

(4.7) 

Comparing (4.6) and (4.7) we find 

P = (Ce - w)E 

Definition 1. By analogy with the problem A we consider those solutions to have a 
physical meaning, which denote energy transfer from the source to infinity (Mandel'shtam prin- 
ciple) . In other words, on the basis of this definition, solutions are selected for which 

p>O,x>a;p<O,x<(a 

Now, let us consider an elastic medium possessing little friction. This is equivalentto 
adding the term 

2&p (x& 

to the right side of (1.3), where E is an arbitrarily small number. We call the problem C for 
a medium with friction Ce. 

Lemma 4. Let the Fourier transformed solution of the problem C be known 

V (y, y, 52 + VW) ein* 

Then the Fourier transformed solution of the problem C, will have the form 

V(y, y, 0 + yw - iE)e'n' 

In fact, for a medium with little friction the right side of (1.3) can be written as 

- P (Y) [(Q + yw)" - 2ifi (Q + Ydl 
after passing to a moving coordinate system, applying the Fourier transform, and dividing out 
the time. There hence results that to obtain the Fourier transformed solution of the problem 
C, in terms of the Fourier transformed solution of the problem C we should replace Q+JX by 

[(sl + VU)* - 2i& (52 + Iw)]"'S Q + yw - i& 

which, indeed, proves Lemma 4. 

Theorem 3. Let an elastic medium possess little friction. In this case the equation 

D (y, yw + P - in) = 0 (4.8) 

has just complex roots. The following asymptotic formula 

y = y0 - iE (cg - w)-' + 0 (e) (4.9) 

holds for the regular roots of this equation, where y,, is a real root of (2.1). The first 
part of the theorem follows from the results obtained in /6/, where it is shown that if o is 
a complex number in (2.2), then (2.2) has only complex roots. Let us prove the second part. 
We represent (4.8) in the form 

--is + Q + yw =$((v) (4.10) 

where II,(v) is an analytic function /8/, and we will seek the roots of (4.10) in the form 
y = yO!- ih. Expanding I+(V) in a series in the neighborhood of yO, we arrive at (4.9), which 
indeed proves Theorem 3. 

Definition 2. We call the limit of the solution of problem C, as a--t0 the solution of 
the problem C (the ultimate absorption principle of Ignatovskii). 

On the basis of Definition 2 and Theorem 3 it can now be shown that in the case of 
regular roots for (2.1) the contour of integration L in (1.9) passes over the real axis 
deviating from it only in the neighborhood of points that are zeroes of the function (2.1): 
Here if c,< 1~', then the contour deflects upward, and downward otherwise. 
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Theorem 4. Let tW0 solutions of the problem C be constructed that satisfy Definitions 
1 and 2, respectively, then in the case of regular roots for the equation (2.1) andupon com- 
pliance with conditions (2.5) of Lemma 2, these solutions agree. 

The proof of Theorem 4 can be executed by analogy with Theorem 19.1 in 18,'. 

5. Let us analyze the solution of problem C for those combinations of the parameters u) 
and R for which equation (3.1) has only two real roots. We first consider the case of zeroes 
with different signs (the solid line in the Fig.1). Evaluating the integral (1.9) by residue 
theory, we find that the solution (1.9) contains two waves undamped at infinity, of the form 

A,erp IifRf - az], -e> a; A, PIP Ii (Rf - &Z)]. 3: < - a (5.1) 

Since yt>O and y~<o, thenbothwaves depart to infinity from the source of oscillations. 
If both roots are of identical sign (the dashed line in the Fig.1) YI,Y~ >O. then the first un- 
damped wave (5.1) will, as before, depart from the source of oscillations while the second 
wave will arrive from-mat the source of oscillations. Since in this case c~<u, then onthe 
basis of (4.6) the energy flux will be propagated from the source to infinity. The situation 
occurring when the wave is propagated in one direction but carries energy in the other direc- 
tion holds even in problem A 18,'. Let us also note that if ya=O but yl>O (this is possible 
if the vibration frequency Q is such that it coincides with the beginning of the dispersion 
curve of problem A), then in this case it is generally meaningless to speak about the second 
wave in (5.1). 

Finally, we consider the case when y1=y2 (the dash-dot line in the Fig.1). In this case 
c~=u~ and (4.9) is not applicable. Proceeding exactly as in deriving (4.9), except retaining 
higher order terms in h in the series expansion of +(y), we find 

i, ,,. -i_ @'a I/G(ac,!ay)-' 

It is seen that the real double pole is bifurcated in a medium with friction. Hence, if 
the ultimate absorption principle is used in constructing the solution (the Mandel'shtam prin- 
ciple is not applicable here) then in studying the problem C, we will have a simple pole but 
we do not obtain a uniform passage to the limit as E-O. In this case as ~40 theamplitudes 
in the solution of the form (5.1) will grow without limit, i.e., the behavior of the solution 
in a strip at a frequency for which cg= U* is analogous to the behavior of the solution in a 
bounded body at the resonance frequency. 

Therefore, the fundamental cases which can hold as a load moves over an inhomogeneous 
strip have been examined here. The case when (2.1) has a zero of order higherthanthesecond 
can be examined analogously. 
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